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Abstract 
Environmental systems usually are approximated in mathematical terms by making simplifying assumptions 

that lead to multiple model structures which may produce results that are equally consistent with available 

observations. An increasing number of papers are now being published on various applications of 

multimodeling in which predictions from various independent models are combined, rather than attempting 

to find the best model. Multimodeling consists of assigning weights to the simulation results from the various 

models, and then combining these results into a single prediction. We constructed a multimodel using 14 

independent Richards equation-based individual models by employing different pedotransfer functions. The 

individual models were not calibrated. Soil water contents were monitored for 300 days with multisensory 

capacitance probes at eight depths in four locations. Simulations using seven different methods to assign 

weights to individual models were compared with observed soil water time series. The multimodel was by 

far more accurate and reliable than the individual models. The concurrent use of several models, and 

mutimodeling in particular, presents an opportunity to better understand and forecast soil processes. 
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Introduction 
Having a multiplicity of models of the same process or phenomenon is commonplace when modelling 

environmental processes, especially when the soil-plant-atmosphere system is considered. The multiplicity 

relates to differences in the simplifications needed to express observed natural complexities in mathematical 

terms, differences in model emphasis, and differences in scales at which models were developed or the 

natural system was observed (Beven, 2002). A massive effort in developing criteria for selecting the best 

model has thus far not produced a univocal solution. All error-based methods condition the evaluation and 

comparison of models on the available data. Using the reasonability of forecasts to evaluate models, e.g. with 

the GLUE methodology (Beven and Binley, 1992), does not exclude the subjective element of selecting 

cutoffs and defining reasonability. Invoking measures of model complexity based on the number of model 

parameters is problematic for nonlinear models. The uncertainty of the model structure is in most cases 

difficult to include in the criteria statistics (van Ness and Sheffer, 2005).  

 

The last 10 years has seen a marked interest in making use of different conceptual approaches instead of 

attempting to find the best model or using a single preferred model. Several approaches to the concurrent use 

of several models are currently being pursued. One approach is multimodeling, which consists of assigning 

weights to the simulation results from different models, and then combining results from the individual 

models into a single prediction (Burnham and Anderson, 2002). Multimodeling has been shown to improve 

both deterministic and probabilistic performances of predictions (Hagedorn et al. 2005).  The objective of 

this work was to investigate and demonstrate the applicability of multimodeling to water flow in variably 

saturated field soils. 

 

Methods 

Multimodeling  

The use of the term “multimodel” in publications has grown exponentially during the past ten years. To deal 

with uncertainties in model selection, multimodel prediction has emerged as a popular technique in climate 

prediction (Barnston et al. 2003), but later propagated also to surface hydrology (e.g., Regonda et al. 2006), 

subsurface hydrology (Neuman, 2002; Guber et al. 2009), and ecological modeling (Link and Barker, 2006). 

Since its introduction, multimodel prediction based on combining results from more than one model has been 

subject to much debate that can be summarized into two questions: (a) is a multimodel prediction better than 
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the single best forecast, and (b) what is the best approach to weigh predictions obtained with the different 

models. The improvement in predictions has been attributed to the fact that the multimodel provides better 

coverage of system parameter space. The relation between the average capability of the single model and the 

performance of the multimodel is not linear, especially when the probabilistic diagnostics is considered 

(Hagedorn et al. 2005). Selection of weights in multimodels is currently still a topic of research. Alternative 

methods for weighing have been reviewed by Armstrong (2001) and Burnham and Anderson (2002), among 

others.  The most often used methods are:  

1) arithmetic averaging of results from all models (AA), 

2) superensemble forecasting (SF) where the multimodel result is the multiple linear regression with 

individual forecasts as the independent variables (Krishnamurti et al. 2000),  

3) superensemble with singular value decomposition (SVD) to alleviate effects of multicollinearity 

caused by similarity in the predictions of individual models (Kharin and Zwiers, 2002),  

4) Bayesian model averaging (BA), (Neuman, 2002),  

5) using information theory (IT) to select weights by minimizing the information loss, for example by 

using Akaike criteria  (Poeter and Andersen, 2005), and  

6) using weights inversely proportional to the accuracy of each model on a training dataset (IW). 
 

The multimodel in this study was built using 14 individual models. Each of the models employed the 

Richards flow equation, the Brooks-Corey-Campbell or van Genuchten-Mualem equations for water 

retention and the unsaturated hydraulic conductivity, and one of 14 pedotransfer functions (PTFs) to estimate 

the hydraulic parameters from basic soil properties: (1) Rosetta (Schaap et al. 2001), (2) Vereecken et al. 

(1989), (3) Varallyay et al. (1982), (4) Wösten et al. (1999), (5) Rawls and Brakensiek (1982), (6) Saxton et 

al. (1986), (7) and (8) Williams et al. (1992), (9) Campbell and Shiozawa (1992), (10) Oosterveld and Chang 

(1980), (11) Mayr and Jarvis (1999), (12) Gupta and Larson (1979), Tomasella and Hodnett (1998), and 

Rawls et al. (1983). References to these PTF sources are given by Pachepsky et al. (2007), while a computer 

code to compute water retention according these functions is available upon request from the first author. 

The saturated hydraulic conductivity of the different textural classes was estimated as described in 

Pachepsky and Rawls (2004). None of the individual models was calibrated. 

 

Field data 

Field data were obtained from a 10x10 m plot at the research site of the Beltsville Agricultural Research 

Center, Maryland, USA. Soils at the site are classified as a coarse-loamy, siliceous, mesic Typic Hapludult, 

either well or excessively well drained. On average, the soils have a coarse loamy sand surface horizon (0-25 

cm, organic matter 1.2-5.1%), followed by a sandy loam horizon (25-80 cm), and a loam horizon (80-120 

cm), with loamy sand and fine-textured clay loam lenses between 120 and 250 cm. Soil water content 

measurements were taken with multi-sensor capacitance probes, MCPs (EnviroSCAN, SENTEK Pty Ltd., 

South Australia), at four locations within the plot. Data were recorded each 15 minutes from January 1 

through October 23, 2007, at depths from 10 cm to 80 cm at 10 cm increments. The MCPs were connected to 

a CR-10X datalogger. Collected data were acquired using a Redwing 100 Airlink modem (Campbell 

Scientific, Inc., Logan, Utah) once a day. Soil texture, bulk density and organic carbon content were 

measured at each location at depths from 10 cm to 100 cm at 10 cm increments. Rainfall at the site was 

measured with a pluviograph, while other weather data were obtained from the energy balance 

meteorological station with an eddy covariance tower located in 100 m from the plot. Daily evaporation rates 

were estimated using the Pennman-Monteith equation. We used the HYDRUS-1D software for all of the 

simulations. 
 

Results 
Basic soil properties and multimodeling results 

Basic soil properties varied substantially across the plot and with depth. Bulk density increased from 1.35-

1.55 g/cm
3
 at 5 cm depth to 1.70-1.95 g/cm

3
 at 90 cm. Sand content varied between 55 and 65 % at the 

surface and between 50 to 70 % at the 90 cm depth. The organic matter content did not show substantial 

variability, decreasing exponentially with depth from 2% at 5 cm depth to 0.2 % at 90 cm. The variations in 

texture and bulk density resulted in differences in the soil water regimes among the different locations 

(Figure 1). The multimodel provided accurate simulations of the daily average water contents at all depths 

(Figure 1). The lowest RMSE values were obtained with singular value decomposition (SVD) weighing. 

RMSEs were within the range of 0.018 cm
3
/cm

3
 to 0.061 cm

3
/cm

3
 at the depth of 10 cm, and within the range 

of 0.005 cm
3
/cm

3
 to 0.019 cm

3
/cm

3
 below 10 cm at four locations. The best individual model performed 

markedly worse than the multimodel. 



© 2010 19th World Congress of Soil Science, Soil Solutions for a Changing World 

1 – 6 August 2010, Brisbane, Australia.  Published on DVD. 

34 

Loc. 1

Day of Year

0 50 100 150 200 250

W
a
te

r 
c

o
n

te
n

t 
(c

m
3
c
m

-3
)

0.0

0.1

0.2

0.3

0.4

0.5

Loc. 2

0 50 100 150 200 250 300

10

20

40

80

 
Figure 1. Examples of the multimodel accuracy at different depths at two monitoring locations. Symbols and 

lines show observed and simulated soil water content time series, respectively; the legend shows depth in cm.  
    

Reliability of multimodeling results 

Each water content time series was split into a training and a testing dataset. Training datasets were  

defined within time windows from 10 to 150 days long, and then moved across the whole observation period. 

All data outside the windows were used to test the multimodel prediction. The best fit of the multimodel to 

the daily water contents in the training sets were obtained using weights. The various weighing methods 

were evaluated in terms of their accuracy and uncertainty (i.e., average and standard deviation) in 

reproducing the measured water contents of the training datasets (Figure 2). 
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Figure 2.  Changes in the multimodel error (RSME) of the test datasets with the duration of the multimodel 

training period. Colors show different weighting methods; abbreviations are explained in the text. 
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Figure 3. Changes in the weights of individual models with the length of the multimodel training period for the 

SVD, IT, IW and BMA weighting methods. See text for abbreviations and PTF numbers. 

 

The length of the training period affected the accuracy of the predictions. In most cases, the average RMSE 

decreased and the standard deviation of the RMSE increased with an increase in the training period for all 

models and locations. Individual models had different weights at different depths, with the weights of some 

of the weighting methods also being dependent upon the duration of training period (Figure 3). 

 

Discussion and conclusion 

Multimodeling was found to be very effective approach to improving the accuracy of the flow simulations. 
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Accuracy and reliability of the multimodeling approach in our study varied among the six weighing methods. 

Overall, the best predictions were obtained with the SVD weighting method, probably because this method is 

well suited to decrease the effects of the multicollinearity of the inputs from the individual models. The main 

uncertainty factors were variation in soil properties, and the length of the training period. The reliability of 

the multimodeling approach increased with the length of the training period.  

 

The excellent results obtained in this study indicate much promise in using the multimodeling methodology 

for analysing field-scale water flow data.  Still, multimodeling is not the only way to take advantage of the 

concurrent use of existing models. Other approaches, such as model abstraction, have proved to be effective 

also. Model abstraction systematically simplifies a more complex model into a series of simpler models, and 

then uses these to (a) learn more about the system, (b) improve robustness of the predictions, (c) improve 

communication between the modeling results, and (d) improve performance of the modeling system as a 

whole (Pachepsky et al. 2007). Overall, the concurrent use of several models presents an important avenue 

for improving our understanding of soil processes.  
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